Particle Physics from Tevatron to LHC: what we know and what we hope to discover

Beate Heinemann, UC Berkeley and LBNL Università di Pisa, February 2010

Outline

Introduction

- Outstanding problems in particle physics
 - and the role of hadron colliders
- Current and near future colliders: Tevatron and LHC

Standard Model Measurements

- Hadron-hadron collisions
- Cross Section Measurements of jets, W/Z bosons and top quarks

Constraints on and Searches for the Higgs Boson

- W boson and Top quark mass measurements
- Standard Model Higgs Boson

Searches for New Physics

- Supersymmetry
- Higgs Bosons beyond the Standard Model
- High Mass Resonances (Extra Dimensions etc.)

First Results from the 2009 LHC run

Precision Measurement of Electroweak Sector of the Standard Model

- W boson mass
- Top quark mass
- Implications for the Higgs boson

The W boson, the top quark and the Higgs boson

- Top quark is the heaviest known fundamental particle
 - Today: m_{top}=173.1+-1.3 GeV
 - Run 1: m_{top}=178+-4.3 GeV/c²
 - Is this large mass telling us something about electroweak symmetry breaking?
 - Top yukawa coupling:
 - < $H>/(\sqrt{2} \text{ mtop}) = 1.005 \pm 0.008$
- Masses related through radiative corrections:
 - $m_W \sim M_{top}^2$
 - $m_W \sim ln(m_H)$
- If there are new particles the relation might change:
 - Precision measurement of top quark and W boson mass can reveal new physics

W Boson mass

- Real precision measurement:
 - LEP: M_W=80.367±0.033 GeV/c²
 - Precision: 0.04%
 - => Very challenging!
- Main measurement ingredients:
 - Lepton p_T
 - Hadronic recoil parallel to lepton: u_{||}

- but statistically limited:
 - About a factor 10 less Z's than W's
 - Most systematic uncertainties are related to size of Z sample
 - Will scale with $1/\sqrt{N_Z}$ (=1/ \sqrt{L})

$$m_T = \sqrt{2p_T^{\ l} p_T (1 - \cos \Delta \phi)},$$

$$p_T \approx |p_T + u_{||}$$

$$m_T \approx 2p_T \sqrt{1 + u_{||}/p_T} \approx 2p_T + u_{||}$$

Lepton Momentum Scale and Resolution

Systematic uncertainty on momentum scale: 0.04%

Systematic Uncertainties

m_T Fit	_			
Source	$W \to \mu \nu$	$W\to e\nu$	Correlatio	on
Tracker Momentum Scale	17	17	100%	
Calorimeter Energy Scale	0	25	0%	
Lepton Resolution	3	9	0%	
Lepton Efficiency	1	3	0%	Limited by data
Lepton Tower Removal	5	8	100%	statistics
Recoil Scale	9	9	100%	
Recoil Resolution	7	7	100%	
Backgrounds	9	8	0%	
PDFs	11	11	100%	Limited by data
W Boson p_T	3	3	100%	and theoretical
Photon Radiation	12	11	100%	understanding
Statistical	54	48	0%	
Total	60	62	-	

TABLE IX: Uncertainties in units of MeV on the transverse mass fit for m_W in the $W \to \mu \nu$ and $W \to e \nu$ samples.

- Overall uncertainty 60 MeV for both analyses
 - Careful treatment of correlations between them
- Dominated by stat. error (50 MeV) vs syst. (33 MeV)

W Boson Mass

New world average:

 $M_w = 80399 \pm 23 \text{ MeV}$

Ultimate precision:

Tevatron: 15-20 MeV

LHC: unclear (5 MeV?)

Top Quark Production and Decay

At Tevatron, mainly produced in pairs via the strong interaction

- Decay via the electroweak interactions Br(t → Wb) ~ 100%
 Final state is characterized by the decay of the W boson
- Cross Sections at Tevatron and LHC:
 - Tevatron: 7 pb
 - LHC (7 TeV): 160 pb
 - LHC (10 TeV): 400 pb
 - LHC (14 TeV): 890 pb

SM: $t\bar{t}$ pair production, $Br(t\rightarrow bW)=100\%$, $Br(W\rightarrow lv)=1/9=11\%$

```
dilepton (4/81) 2 leptons + 2 jets + missing E_T l+jets (24/81) 1 lepton + 4 jets + missing E_T fully hadronic (36/81) 6 jets
```

(here: I=e,μ)

SM: $t\bar{t}$ pair production, $Br(t\rightarrow bW)=100\%$, $Br(W\rightarrow lv)=1/9=11\%$

```
dilepton (4/81) 2 leptons + 2 jets + missing E_T lepton+jets (24/81) 1 lepton + 4 jets + missing E_T fully hadronic (36/81) 6 jets
```


missing ET

SM: $t\bar{t}$ pair production, $Br(t\rightarrow bW)=100\%$, $Br(W\rightarrow lv)=1/9=11\%$

```
dilepton (4/81) 2 leptons + 2 jets + missing E_T lepton+jets (24/81) 1 lepton + 4 jets + missing E_T fully hadronic (36/81) 6 jets
```


SM: $t\bar{t}$ pair production, $Br(t\rightarrow bW)=100\%$, $Br(W\rightarrow lv)=1/9=11\%$

```
dilepton (4/81) 2 leptons + 2 jets + missing E_T lepton+jets (24/81) 1 lepton + 4 jets + missing E_T fully hadronic (36/81) 6 jets
```


more jets

Top Event Categories

Finding the Top at Tevatron and LHC without b-quark identification

- Tevatron:
 - Top is overwhelmed by backgrounds:
 - Even for 4 jets S/B is only about 0.8
 - Use b-jets to purify sample
- LHC
 - Signal clear even without b-tagging: S/B is about 1.5-2

Finding the b-jets

- Exploit large lifetime of the b-hadron
 - B-hadron flies before it decays: d=cτ
 - Lifetime τ =1.5 ps⁻¹
 - $d=c\tau = 460 \mu m$
 - Can be resolved with silicon detector resolution.

Primary

vertex

Achieve efficiency of about 40-50% and fake rate of 0.5-2% (at 50 GeV) at Tevatron

displaced tracks

Secondary vertex

d₀

The Top Cross Section

Tevatron

- Measured using many different techniques
- Good agreement
 - between all measurements
 - between data and theory
- Precision: ~13%

LHC:

- Cross section ~100 times larger
- Measurement will be one of the first milestones (already with 10 pb⁻¹)
 - Test prediction
 - demonstrate good understanding of detector
- Expected precision
 - ~4% with 100 pb⁻¹

Top at LHC: very clean

- About 200 pb⁻¹ surpass
 Tevatron top sample
 statistics
- About 20 pb⁻¹ needed for "rediscovery"

18

Top Mass Measurement: $tt \rightarrow (blv) (bqq)$

- 4 jets, 1 lepton and missing E_T
 - Which jet belongs to what?
 - Combinatorics!
- B-tagging helps:
 - 2 b-tags =>2 combinations
 - 1 b-tag => 6 combinations
 - 0 b-tags =>12 combinations
- Two Strategies:
 - Template method:
 - Uses "best" combination
 - Chi2 fit requires $m(t)=m(\overline{t})$
 - Matrix Element method:
 - Uses all combinations
 - Assign probability depending on kinematic consistency with top

Top Mass Determination

- Inputs:
 - Jet 4-vectors
 - Lepton 4-vector
 - Remaining transverse energy, p_{T.UE}:
 - $p_{T,v} = -(p_{T,l} + p_{T,UE} + \sum p_{T,jet})$
- Constraints:
 - M(Iv)=M_W
 - $M(q\overline{q})=M_W$
 - $M(t)=M(\overline{t})$
- Unknown:
 - Neutrino p_z
- 1 unknown, 3 constraints:
 - Overconstrained
 - Can measure M(t) for each event: m_treco
 - Leave jet energy scale ("JES") as free parameter

Selecting correct combination 20-50% of the time

Example Results on m_{top}

CDF Run II Preliminary 3.2 fb⁻¹

 $\pm 1.0\%$

 $\pm 0.9\%$

Combining M_{top} Results

- Excellent results in each channel
 - Dilepton
 - Lepton+jets
 - All-hadronic
- Combine them to improve precision
 - Include Run-I results
 - Account for correlations
- Uncertainty: 1.3 GeV
 - Dominated by syst. uncertainties
- Precision so high that theorists wonder about what it's exact definition is!

Implications for the Higgs Boson

LEPEWWG 03/09

Standard Model still works!

Indirect constraints: m_H<163 GeV @95%CL

The Higgs Boson

- Electroweak Symmetry breaking caused by scalar Higgs field
- vacuum expectation value of the Higgs field $\Phi = 246 \text{ GeV/c}^2$
 - gives mass to the W and Z gauge bosons,
 - $M_W \propto g_W < \Phi >$
 - fermions gain a mass by Yukawa interactions with the Higgs field,
 - m_f ∝ g_f<Φ>
 - Higgs boson couplings are proportional to mass
- Higgs boson prevents unitarity violation of WW cross section
 - $\sigma(pp \rightarrow WW) > \sigma(pp \rightarrow anything)$
 - => illegal!
 - At √s=1.4 TeV!

Terms which grow with energy cancel for $E \gg M_H$

This cancellation requires $M_H \le 800 \text{ GeV}$

The Higgs Boson

- Electroweak Symmetry breaking caused by scalar Higgs field
- vacuum expectation value of the Higgs field $\langle \Phi \rangle = 246 \text{ GeV/c}^2$
 - gives mass to the W and Z gauge bosons,
 - $M_W \propto g_W < \Phi >$
 - fermions gain a mass by Yukawa interactions with the Higgs field,
 - $m_f \propto g_f < \Phi >$
 - Higgs boson couplings are proportional to mass

Higgs boson prevents unitarity violation of WW cross

This cancellation requires $M_H < 800 \text{ GeV}$

 $Im(\phi)$

Higgs Production: Tevatron and LHC

dominant: gg→ H, subdominant: HW, HZ, Hqq

Higgs Boson Decay

- Depends on Mass
- M_H<130 GeV/c²:
 - bb dominant
 - WW and ττ subdominant
 - γγ small but useful
- M_H>130 GeV/c²:
 - WW dominant
 - ZZ cleanest

How to make a Discovery

- This is a tricky business!
 - Lot's of complicated statistical tools needed at some level
- But in a nutshell:
 - Need to show that we have a signal that is inconsistent with being background
 - Number of observed data events: N_{Data}
 - Number of estimated background events: N_{Bq}
 - Need number of observed data events to be inconsistent with background fluctuation:
 - Background fluctuates statistically: $\sqrt{N_{Bg}}$
 - Significance: $S/\sqrt{B}=(N_{Data}-N_{Bg})/\sqrt{N_{Bg}}$
 - Require typically 5_o, corresponds to probability of statistical fluctuation of 5.7x10⁻⁷
 - Increases with increasing luminosity: S/√B ~ √L
 - All a lot more complex with systematic uncertainties...

A signal emerging with time

 \int Ldt = 0.1 fb⁻¹ (year: 2008/2009)

- Expected Events:
 - N_{higgs}~2, N_{background}=96 +/- 9.8
 - $S/\sqrt{B}=0.2$
- No sensitivity to signal

A signal emerging with time...

$$\int Ldt = 1 \text{ fb}^{-1} \text{ (year: } \sim 2009)$$

- Expected Events:
 - N_{higgs}~25, N_{background}~960 +/- 30
 - S/√B=0.8
- Still no sensitivity to signal

There it is!

\int Ldt = 30 fb⁻¹ (year: 2011/2012?)

- Expected Events:
 - N_{higgs}~700, N_{background}=28700 +/- 170
 - S/√B=4.1
- Got it!!!

High Mass: m_H>140 GeV

$H \rightarrow WW(*) \rightarrow I^+I^-\gamma\gamma$

 Higgs mass reconstruction impossible due to two neutrinos in final state

 Make use of spin correlations to suppress WW background:

Higgs is scalar: spin=0

 leptons in H → WW^(*) → I⁺I⁻vv are collinear

Main background: WW production

H-WW^(*)·I⁺I⁻ $\nu\nu$ (I=e, μ)

- Event selection:
 - 2 isolated e/μ :
 - p_T > 15, 10 GeV
 - Missing E_T > 20 GeV
 - Veto on
 - Z resonance
 - Energetic jets
- Separate signal from background
 - Use matrix-element or Neural Network discriminant to denhance sensitivity
- Main backgrounds
 - SM WW production
 - Top
 - Drell-Yan
 - Fake leptons
- No sign of Higgs boson found yet

Limits on the Higgs boson cross section

- Lack of observation
 - => an upper limit on the Higgs cross section
 - I.e. if the cross section was large we would have seen it!
- Results presented typically as ratio:
 - Experimental limit / theoretical cross section
 - If this hits 1.0 we exclude the Higgs boson at that mass!
- In this example from CDF: a factor 1.3 above SM cross section
 - at M_H=165 GeV/c²

Tevatron vs LHC for gg → H

m _H	Tevatron	LHC 7 TeV	LHC 10 TeV	LHC 14 TeV
120 GeV	1.1 pb	17 pb	32 pb	55 pb
160 GeV	0.4 pb	9.2 pb	18 pb	33 pb

- Cross sections ~20 times larger at LHC compared to Tevatron
 - Rather strong rise as process is gg initiated
- Backgrounds arise from qq processes
 - Signal/Background better at LHC than Tevatron

Conclusions of 3rd Lecture

- Higgs boson most wanted particles
 - LHC must either find it or find something else
- Within the Standard Model constraints from precision electroweak measurements
 - $m_W = 80.399 \pm 0.023 \text{ GeV/c}^2$
 - $M_{top} = 173.1 \pm 1.3 \text{ GeV/c}^2$
 - m_H between 114 and 157 GeV/c²